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Abstract 

An analysis is carried out on steady two dimensional stagnation point flow of an 

incompressible conducting viscous fluid with variable properties over a stretching surface 

embedded in a saturated porous medium. The flow model is subjected to (i) transverse magnetic 

field, (ii) variable viscosity and thermal conductivity, (iii) thermodiffusion (Soret effect), (iv) 

stretching of both plate and free stream (v) pressure gradient in the flow direction is considered 

non-zero. The Runge-Kutta fourth order method with a self corrective procedure i.e. shooting 

technique has been applied to solve the governing equations. An interesting result of the analysis 

is that inversion in formation of velocity boundary layer is due to reversal in stretching ratio. On 

the other hand, heat transfer leading to formation of thermal boundary layer is not affected 

significantly. Variable thermal conductivity enhances the temperature distribution. Increase in 

concentration difference and thermophoresis parameter gives rise to thinner solutal boundary 

layer. Further, it is remarked that heavier chemically reactive species enhance the rate of solutal 

transfer at the surface. 
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1. Introduction 

The exact solutions of two dimensional and three dimensional viscous flow near a stagnation 

point may be obtained from the consideration that at large distance from the stagnation point, the 

flow is essentially the same as that of the corresponding potential flow problem. Thus, the 

solution of this class of flow problem may be derived from the solution of the inviscid flow 

(potential flow) problem. Application of a transverse magnetic field fixed to the body should 

reduce the heat transfer at the stagnation point and increase the body’s drag. Both these results 

are desirable for the protecting the vehicle reentering the atmosphere (Cramer and Pai [1]). The 

flow in the neighborhood of a stagnation point was first studied by Hiemenz [2]. Stagnation point 

flow is an important class of problem in hydrodynamics as because exact solution of Navier-

Stokes equations is possible in such flow problems. Many authors such as Vajravelu [3], Sharma 

and Jat [4], Chaim [5] studied stagnation point flow in presence of internal dissipation. The 

objective of the present study is to account for the variable fluid properties such as viscosity and 

conductivity as the fluid properties are amenable to thermal and mass diffusion. Another striking 

feature of the study is to consider the effect of thermophoresis which causes small particles to be 

drifted from hot surface due to temperature gradient which is a common phenomenon in many 

industrial processes associated with mass transfer. The thermophoresis is an effective mass 

transfer mechanism in the chemical vapour deposition process used in fabrication of optical fiber. 

Goren [6] has studied thermophoretic effect on laminar flow over a horizontal flat plate. Shen [7] 

considered the thermophoretic deposition onto cold surfaces. Makinde et al. [8] have studied the 

effects of Brownian motion, thermophoresis and magnetic field on stagnation point flow and heat 

transfer due to nanofluid flow towards a stretching sheet. Further, Nadeem et al. [9] have studied 

a steady stagnation point flow with heat transfer of a second grade nanofluid on a stretching 

surface. They applied homotopy analysis method (HAM) to solve the resulting equations. Reddy 

[10] has studied the effect of thermophoresis, viscous dissipation and Joule heating on steady 

MHD flow over an inclined radiative isothermal permeable surface with variable thermal 

conductivity. Parida and Rout [11] have studied free convective flow with variable permeability 

with couple stress and heat source through porous medium. Muhaimin et al. [12] examined the 

effects of thermophoresis and chemical reaction on unsteady MHD mixed convective flow over a 

porous wedge considering temperature-dependent viscosity. Chen [13] has studied the MHD flow 

and heat transfer for two types of viscoelastic fluid over a stretching sheet with energy 

dissipation, internal heat source and thermal radiation. The governing equations are solved 

analytically using Kummer’s functions. Nayak et.al [14] have studied steady MHD flow and heat 

transfer of a third grade fluid in wire coating analysis with temperature dependent viscosity. They 
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have considered Reynold’s and Vogel’s model for variable viscosity. They have not considered 

the effect of thermophoresis in their study. The governing equations of the flow model due to 

inclusion of variable fluid properties and thermophoresis, the analytical solution seems to be 

difficult. Therefore, fourth order Runge-Kutta method with shooting technique has been applied 

to solve the governing equations. The study of flow through porous medium has many 

applications in physical, chemical and biological processes. The problem of MHD flow of an 

incompressible viscous electrically conducting fluid past a porous plate through a porous medium 

with uniform angular velocity about a non coincident parallel axis has been studied by Parida et 

al. [15]. Parida and Dash [16] have studied the dusty fluid flow through a porous medium under 

the influence of transverse magnetic field in presence of heat source. Panda et al. [17] have 

studied the three dimensional MHD free convective flow with heat and mass transfer through a 

porous medium with periodic permeability. Sahoo et al. [18] have studied the unsteady two 

dimensional MHD flow and heat transfer of an elastico-viscous liquid past an infinite hot vertical 

porous surface bounded by porous medium with source/sink. Further, the hydro-magnetic flow 

and heat transfer through porous medium in a elastico-viscous fluid over a porous plate in the slip 

flow regime has been studied by Panda et al. [19].  

The present investigation is a renewed interest over the works of Rahman [20], El-Sayed and 

Elgazery [21], Sharma and Singh [22]. Rahman [20] in his study suggested a locally similar 

solution for hydromagnetic and thermal slip flow over a flat plate with variable fluid properties 

and convective bounding surface condition. He has restricted his study to the variable viscosity 

and conductivity without considering the variation of solutal concentration in the process of mass 

transfer of diffusing species. El-Sayed and Elgazery [21] have studied the problem considering 

the variable fluid properties and thermophoresis effect in mass diffusion process but the problem 

does not account for the stretching of bounding surface, instead, accounts for the variable suction 

at the surface. Sharma and Singh [22] have studied the effects of variable thermal conductivity 

keeping the viscosity of the fluid constant; though viscosity property is amenable to thermal 

property of the fluid. Moreover, they have not considered mass transfer as well as diffusion of 

thermo effect in their studies.  

Thus, the novelty of the present study involves interaction of electromagnetic force with 

variable material properties of the fluid related to three boundary layers such as velocity, thermal 

and solutal. Further, the flow is set to pass through a saturated porous medium which resists the 

flow in the boundary layer under study. Moreover, heat transfer equation is associated with 

volumetric heat source and the solutal concentration variation is modified by the inclusion of 

diffusion thermo effect. The results of the present numerical method are validated by comparing 
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with the results reported earlier. The most important application of MFD is the generation of 

electrical power with the flow of an electrically conducting fluid through a transverse magnetic 

field. For generating power on large scale in stationary plants with large magnetic fields (about 5 

Weber/m2) cryogenic and super conducting magnets are required to produce these very large 

magnetic fields. Generation of MFD power on a small scale is of interest for space application 

[1].  

 

2. Formulation of the Problem 

Consider the two dimensional viscous flow of an incompressible electrically conducting fluid 

with a variable viscosity and thermal conductivity near a stagnation point on a non-conducting 

stretching sheet 0y , the flow being in the region 0y . The velocity and temperature of the 

stretching sheet are set to uw(x) and wT
.  

 

Fig. 1. A Sketch of the Physical Problem 

   

The governing equations of continuity, momentum, energy and concentration under the 

influence of externally imposed transverse magnetic field (magnetic field fixed to the plate), 

variable thermal conductivity with thermophoresis in the boundary layer flow composed with 

porous medium with permeability 
 Kp

in the presence of transverse magnetic field with 

strength 0B
following Rahman [20], Sharma and Singh [22] are given by  
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where 
TV , the thermophoretic velocity as suggested by Talbot et.al [23] is given by 
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where 
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p

T

t




  contributes to thermophoretic diffusivity, pt  is the thermophoretic coefficient, 

2.12.0  pt  indicated by Batchelor [24].  

The LHS of binary diffusion equation (4) has two terms. The first term describes the 

diffusion due to concentration gradient. It is known as Fick’s diffusion law and corresponds the 

Fourier heat conduction law in the thermal boundary layer. The binary diffusion coefficient, D is 

a physical property. The second term describes the thermodiffusion (also called Soret effect). 

This gives rise to an additive mass transfer because of the temperature gradient. Therefore, there 

is a coupling effect between heat transfer and mass transfer. The present analysis is carried out so 

that the dimensionless thermal diffusion coefficient  is as far as possible independent of the 

concentration but function of y-coordinate, where as the binary diffusion coefficient D is 

constant. We have avoided further coupling here i.e. diffusion thermo effect or Dufour effect 

Sparrow et al [25] assuming the level of species concentration is low. In many cases the coupling 

effects are small enough to be neglected compared to the effects of diffusion or heat conduction. 

However, there are exceptions such as the thermodiffusion is used in separating isotopes and the 

diffusion thermo effect is used in mixtures of gases with very different molar masses [26]. 

In the free stream ( )u U x  represents potential flow and the equation (2) reduces to 
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Using (10), equation (9) becomes 
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Moreover, Arunachalam and Rajappa [28] and Chaim [29], considered the variable thermal 

conductivity k   as  
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we get the following non dimensional equations and corresponding boundary conditions 
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The parameters of physical interest such as skin-friction coefficient, Nusselt number and 

Sherwood number are  
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In non-dimensional form equation (18) is given by 
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3. Results and Discussion    

The equations (14), (15) and (16) are coupled and nonlinear equations. The nonlinear 

equations with boundary conditions (17) forms a two-point boundary value problem (BVP) and 

are solved using the fourth order Runge-Kutta method with shooting technique. In order to test 
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the consistency of the solution, three different step sizes such as; 0.004  , 0.002   and 

001.0 are used in the process of computation. It is observed that 0.001   provides 

sufficiently accurate (error less than
610
) results. In order to compare the results of the present 

study with the earlier works, the shear stress )0(f   at the stretching surface this has been 

presented in table 1. From equation (14) and corresponding boundary conditions (17), the 

following earlier works are derived as special cases.                                                                              

(i) r , Sharma and Singh [22]. 

(ii) , M 0, 0r Kp    , Pop et al. [30]. 

(iii)  , M 0, 0, 0, 0r Kp S b      , Chiam [29]. 

(iv)   , M 0, 0, 0, 0, 0r Kp S b       , Mahapatra and Gupta [31] 

It is observed from Table 1 that the present work is in good agreement with the previous 

works. Further, it shows that  0f   changes sign, when   shifts from 1  to 1 ; hence the 

relative rates of stretching of the plate and free stream may be pre assigned as per the modeling 

requirement. 

 

Table 1. Skin friction,  0f  for different values of λ, the ratio of stretching rates  

λ 

 0f   

Mahapatra and 

Gupta [31] 
Pop et al. [30] 

Sharma and Singh 

[22] 
Present Study 

0.1 -0.9694 -0.9694 -0.969386 -0.96965625 

0.2 -0.9181 -0.9181 -0.9181069 -0.91816450 

0.5 -0.6673 -0.6673 -0.667263 -0.66726432 

2.0 2.0175 2.0174 2.01749079 2.01750252 

3.0 4.7293 4.7290 4.72922695 4.72928082 

 

The table 2 presents dimensionless heat flux at the surface )0(   for 

0,  0,   0,   0,   ,   Pr 0.023rM Kp S       . It is found that values of  0  agree 

with the results obtained by Chaim [29] and Sharma and Singh [22] with differences shown in the 

table. It is remarked that the difference increases with the higher value of thermal conductivity 

parameter . Therefore, it is concluded that small variation in thermal conductivity parameter   

desirable. 
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Tab. 2. Values of  0  for Different Values of Thermal Conductivity, ε  

    Chiam [29] 
Sharma and Singh 

[22] 
Present Study 

0.0 0.224886 0.22489 0.22488274 

0.05 0.214397 0.21440 0.21932532 

0.1 0.204844 0.20485 0.21426800 

 

Table 3 presents the rate of heat transfer (Nusselt number) at the plate for different values of 

stretching parameter  . It increases with greater stretching rate steadily irrespective 

of 1or   1   . Thus, it is remarked that rate of heat transfer is not affected much irrespective 

of 1or   1   . It was also supported by the previous authors Sharma and Singh [22], Pop et al. 

[30], Mahapatra and Gupta [31]. 

 

Tab. 3. Values of  0  for Different Values of λ  

λ 

 0  

Pop et al. [30] 
Mahapatra and 

Gupta [31] 

Sharma and 

Singh [22] 
Present Study 

0.1 0.081 0.081 0.081245 0.08229665 

0.5 0.135 0.136 0.135571 0.13557159 

2.0 0.241 0.241 0.241025 0.24102456 

 

From table 4, it is seen that  0f   increases with magnetic field strength and stretching rate 

being 1   but decreases with 1  . The decrease in skin friction gives rise to an asymptotic fall 

in velocity. Magnetic field does not produce flow separation or reverse flow Cramer and Pai [1]. 

Moreover, the increase in temperature due to permeability parameter may be attributed to the 

resistance offered by the porous medium to the flow.   Thus, the positive and negative values of 

skin friction indicate the formation of boundary layers and inverted boundary layer for  

1 and  1    respectively. It is further concluded that increase in greater magnetic field 

strength, enhances  0f   slightly, on the other hand higher stretching ratio   contribute 

significantly. Therefore, greater rate of free stream stretching is not favorable for the reduction of 

skin friction.  
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Tab. 4. Values of  0f   for Different Values of λ and M. 

λ 
 0f   

M=0.0 M=0.1 M=0.5 M=1.0 M=1.5 

0.1 -0.96965625 -0.97376816 -1.06799955 -1.32111841 -1.66020814 

0.2 -0.91816450 -0.92158975 -1.00049272 -1.21562579 -1.50850048 

0.5 -0.66726432 -0.66910298 -0.71189178 -0.83212616 -1.00168334 

2.0 2.01750252 2.019944307 2.07772440 2.24910348 2.50962337 

3.0 4.72928082 4.733453542 4.83256039 5.13037885 5.59263544 

 

Table 5 shows that the rate of heat transfer decreases with an increase in the values of 

,  and PM r  in the presence of volumetric heat source but increases in the presence of sink as the 

presence of sink absorbs heat and hence to compensate the loss, rate of heat transfer at the 

bounding surface increases. 

 

Tab. 5. Values of Rate of Heat Transfer for Different Values of λ, ε, M, θr, Pr, S. 

M ε λ Pr S  0  

0 0 0.1 0.023 0 0.049828 

0 0.1 0.1 0.023 0 0.046372 

0.5 0.1 0.1 0.023 0.1 0.015002 

0.5 0.1 0.1 0.01 0.1 0.006570 

0.5 0.1 0.1 0.01 -0.1 0.043692 

 

Table 6 displays the rate of mass transfer i.e. Sherwood number. It is to note that an increase 

in thermophoretic parameter    and Schmidt number (Sc), leads to increase the rate of mass 

whereas, a reverse effect is observed in case of variable viscosity parameter  r  and heat source 

strength. Thus, it is concluded that heavier species combined with thermophoresis enhances the 

mass transfer rate at the plate but variable viscosity and heat source affects adversely.  

 

Tab. 6. Values of Rate of Mass Transfer for Different Values of θr, τ, Sc, S. 

θr τ Sc S  0  

5 0.0 0.22 0.1 0.292099 

5 0.5 0.22 0.1 0.313355 

-5 0.5 0.22 0.1 0.2929937 
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5 0.5 0.5 0.1 0.4480516 

2 0.5 0.5 0.1 0.5291917 

2 0.5 0.5 0.01 0.5349787 

2 0.5 0.5 -0.01 0.5362359 

 

From figure 2, it is remarked that inversion of boundary layer occurs for 1 and 1   i.e. 

free stream stretching velocity is greater than plate stretching and vice-versa. Moreover, it is 

noticed that for 1 , there is no formation of boundary layer since stretching velocity of the 

plate is equal to free stream velocity and hence, no momentum transfer occurs. The effect of 

higher value of magnetic parameter (M) is significant and the profiles are distinct.  
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Fig. 2. Velocity Profile for Various Values of   When M = 0.0, 1.0 

Figure 3 shows that an increase in porosity parameter  Kp  leads to increase the velocity at 

all the points in the boundary layer for 1  . 
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Fig. 3. Velocity Profile for Various Values of Kp  When 1  and 1   
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Fig. 4. Velocity Profile for Various Values of r   

 

Figure 4 exhibits the effect of variable viscosity parameter  r  on velocity distribution. It is 

observed that an increase in viscosity parameter  r  reduces the velocity for both 

 0 2,3,5r r   and  0 5, 3, 2r r      . The variation is asymptotic in nature 

commensurate with ambient condition. 

Figures 5 and 6 show that increase in magnetic parameter as well as porosity parameter 

enhance the temperature slightly. This further shows that temperature gets enhanced due to the 

presence of magnetic field. 
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Figure 7 shows that an increase in   leads to decrease the temperature distribution. One 

striking feature of the temperature distribution is that temperature distribution does not show 

anomalous behavior depending upon stretching ratio 1   and 1   as shown in velocity 

distribution (Figure 2) depicting inversion distribution resulting in formation of inverted 

boundary layer. 

Figure 8 shows that the temperature distribution decreases with an increase in Pr . The 

Prandtl number (Pr) signifies the ratio of momentum diffusivity to thermal diffusivity. Fluids 

with lower Prandtl number will posse higher thermal conductivity resulting thicker thermal 

boundary layer structure so that heat can diffuse from the sheet faster. 

 

Fig. 5. Temperature Profile for Various Values of M 
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Fig. 6. Temperature Profile for Various Values of Kp 
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Fig. 7. Temperature Profile for Various Values of   
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Figure 9 shows that an increase in variable thermal conductivity parameter is favorable for 

rise in temperature. The case of constant thermal conductivity can be retrieved when 0   which 

is evident from equation (12). 

Figures 10, 11 and 12 show that heavier species i.e. higher value of Sc as well as Nc and   

give rise to thinner solutal boundary layer. Most importantly, the thermophoretic parameter is 

being affected by temperature difference between free stream and thermal boundary layer. The 

increase in difference of temperatures causes thinner solutal boundary layer.   
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Fig. 8. Temperature Profile for Various Values of Pr 
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Figure 9. Temperature Profile for Various Values of   
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Fig. 10. Concentration Profile for Various Values of Sc 
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Fig. 11. Concentration Profile for Various Values of Nc 
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Fig. 12. Concentration Profile for Various Values of   

 

Conclusions 

From the present study following conclusions are drawn. 

(i) A radical variation is marked in shearing stress at the plate due to variation in the ratio of 

rates of stretching of deformable surface to that of free stream (Table 1) but the variation is not so 

significant on the rate of heat transfer at the plate (Table 3) as because the momentum transport at 

the surface gets affected more than the transport of thermal energy. 

(ii) Inversion in formation of velocity boundary layer occurs due to stretching ratio 

reversal. 

(iii)  Presence of porosity and magnetic field enhance the temperature distribution. 

(iv)  There is no inversion in the formation of thermal boundary layer. Thus, the 

reversal of stretching ratio fails to affect transport of thermal energy like momentum transport. 

(v) Increase in concentration difference and thermophoresis is resulted in thinner 

solutal boundary layer. 
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Nomenclature 

u, v     x- and y-components of the velocity field  

x , y    cartesian co-ordinates along x-,y- axes respectively 

0B
      

magnetic field intensity 

ε          thermal conductivity parameter 

μ         dynamic viscosity  

wT       temperature at the surface of the plate  

Tf           reference temperature 

T       temperature of the fluid within the boundary layer  

T      temperature of the ambient fluid  

)(xU  free stream velocity  

     dynamic viscosity at ambient temperature
  

 

        kinematic viscosity  

σ        electrical conductivity 

λ         ratio of free stream velocity to stretching sheet  

ψ        stream function  

η         similarity variable 

         dimensionless temperature 

         dimensionless concentration 

r        variable viscosity parameter 

Rex
     local Reynolds number  

        fluid density  

k thermal conductivity 
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k        thermal conductivity at ambient temperature 

Pr         Prandtl number 

pC        specific heat at constant pressure    

wh         convective heat transfer coefficient  

a, b       constant stretching rates 

  f          dimensionless stream function 

M          Hartmann number 

S           local heat source/sink parameter 

fC         local skin-friction coefficient 

Nu        local Nusselt number 

Sh          local Sherwood number 

Sc          Schmidt number  

Nc         concentration difference parameter 

            thermophoretic parameter 

wq          rate of heat transfer 

mq          rate of mass transfer 

Q           volumetric rate of heat generation/absorption 

Kp porosity parameter 

 xuw     velocity of stretching sheet 

τw             shear stress 

 

Subscripts 

w, ∞    surface condition; ambient condition 
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